Vectors Circuit Pre-Calculus Name

Date	Period

<u>Directions</u>: Begin in cell #1. Answer the question (show necessary work on this page or attach separate paper). Search for your answer. Label that cell #2 and proceed in this manner until you complete the circuit (get back to the beginning). This is a calculator active assignment.

#_1Answer: 91.405, 79.732° Given: $\bar{v} = \langle -3, 6 \rangle$; $\bar{u} = \langle 2, -5 \rangle$ Find $\bar{u} + \bar{v}$	# Answer: The component form of vector \overline{AB} is $\langle -11,7 \rangle$. Write vector \overline{AB} in linear combination of unit vectors.
# Answer: $\langle -22, 11 \rangle$ 3) Given coordinates of points A (-4, 5) and G (-7, 9) Find component form of \overline{GA}	# Answer: 196.899, $S16.832^{\circ}E$ Three forces, 120 pounds, 90 pounds and 50 pounds act on the same object at angles of 50° , 150° and -70° respectively, with the positive x-axis. Find the direction and magnitude of the resultant of these forces.
# Answer: 5 Given vectors $\vec{u} = \langle -3, 4 \rangle$ and $\vec{v} = \langle 5, -2 \rangle$. Sketch \vec{u}, \vec{v} , and $\vec{u} + \vec{v}$	#Answer: $\langle -1, 1 \rangle$ Given: $\vec{v} = \langle -3, 6 \rangle$; $\vec{w} = \langle 7, -3 \rangle$ Find $\frac{1}{3}\vec{v} - 3\vec{w}$

# Answer: $\overline{AB} = -11i + 7j$	# Answer: 56.65
A small airplane traveling at 220 mph has a compass heading of 220°. The wind at the same altitude has a velocity of 45 mph and a heading of 72° east of north. Find the resultant velocity of the plane and the true bearing.	An airplane traveling at 270 mph is heading $S21^{\circ}E$. The wind at this altitude has a uniform velocity of 75 mph and a heading of $N32^{\circ}W$. Find the resultant speed of the plane and the true bearing.
# Answer: (3, -4)	# Answer: 183.395 mph. S32.529°W
$\frac{\#}{\text{Given coordinates of points } A (-4, 5) \text{ and } G (-7, 9)}$ Find $\ \overline{GA}\ $	 Answer: 183.395 mpn. S32.529 W A box weighing 110 pounds is sitting on a ramp at a 31° angle from the horizontal. Find the magnitude of the force keeping the box from sliding down the ramp.