\qquad
\qquad
\qquad
Directions: Begin in cell \#1. Answer the question (show necessary work on this page or attach separate paper). Search for your answer. Label that cell \#2 and proceed in this manner until you complete the circuit (get back to the beginning). This is a calculator active assignment.

\#_1 Answer: 91.405, 79.732° Given: $\stackrel{\rightharpoonup}{v}=\langle-3,6\rangle ; \stackrel{\rightharpoonup}{\mathrm{u}}=\langle 2,-5\rangle$ Find $\overrightarrow{\mathrm{u}}+\vec{v}$	Answer: The component form of vector $\overrightarrow{A B}$ is $\langle-11,7\rangle$. Write vector $\overrightarrow{A B}$ in linear combination of unit vectors.
\# Answer: $\langle-22,11\rangle$ 3) Given coordinates of points $A(-4,5)$ and $G(-7,9)$ Find component form of $\overrightarrow{G A}$	\#_ Answer: $196.899, \quad S 16.832^{\circ} E$ Three forces, 120 pounds, 90 pounds and 50 pounds act on the same object at angles of $50^{\circ}, 150^{\circ}$ and -70° respectively, with the positive x -axis. Find the direction and magnitude of the resultant of these forces.
Given vectors $\overrightarrow{\mathrm{u}}=\langle-3,4\rangle$ and $\vec{v}=\langle 5,-2\rangle$. Sketch $\stackrel{\rightharpoonup}{\mathrm{u}}, \stackrel{\rightharpoonup}{v}$, and $\stackrel{\rightharpoonup}{\mathrm{u}}+\stackrel{\rightharpoonup}{v}$	\#__ Answer: $\left\langle\begin{array}{ll}-1, & 1\rangle\end{array}\right.$ Given: $\vec{v}=\langle-3,6\rangle ; \overrightarrow{\mathrm{w}}=\langle 7,-3\rangle$ Find $\frac{1}{3} \stackrel{v}{v}-3 \overrightarrow{\mathrm{w}}$

\qquad

A small airplane traveling at 220 mph has a compass heading of 220°. The wind at the same altitude has a velocity of 45 mph and a heading of 72° east of north. Find the resultant velocity of the plane and the true bearing.

An airplane traveling at 270 mph is heading $S 21^{\circ} \mathrm{E}$. The wind at this altitude has a uniform velocity of 75 mph and a heading of $N 32^{\circ} \mathrm{W}$. Find the resultant speed of the plane and the true bearing.

Given coordinates of points $A(-4,5)$ and $G(-7,9)$
Find $\|\overrightarrow{G A}\|$

A box weighing 110 pounds is sitting on a ramp at a 31° angle from the horizontal. Find the magnitude of the force keeping the box from sliding down the ramp.

