Sec. 3.2: Logarithmic Functions and Their Graphs

Definition of a Logarithmic Function

For $x>0, b>0$, and $b \neq 1$, the logarithmic function with base b is denoted $f(x)=\log _{b} x$, where

$$
y=\log _{b} x \text { if and only if } x=b^{y}
$$

Log With Special Base

1) $\log _{10}$: Common log (log)
2) $\log _{e}$: Natural Log (In)

The function defined by $f(x)=\log _{e} x=\ln x, x>0$ is called the natural logarithmic function.

Ex. 1: Write each equation in its equivalent exponential form.
a. $2=\log _{5} x$
b. $x=\ln 64$

Ex. 2: Write each equation in its equivalent logarithmic form.
a. $y=e^{4}$

$$
\text { b. } \quad 9=\sqrt{81}
$$

Ex. 3: Evaluate
a) $\log _{2} 16$
b) $\log _{169} 13$
c) $\log _{6}\left(\frac{1}{36}\right)$
d) $\log _{1 / 3} 27$
e) $\log _{9} \sqrt{9}$
f) $\log _{100} 10$
g) $\log _{\frac{16}{9}} \frac{27}{64}$

Properties of Logarithms

1. $\log _{b} 1=0$
2. $\log _{b} \boldsymbol{b}=1$
3. $\log _{b} \boldsymbol{b}^{x}=\boldsymbol{x}$ and $\boldsymbol{b}^{\log _{b} x}=\boldsymbol{x} \quad$ Inverse Properties
4. If $\log _{b} x=\log _{b} y$, then $x=y$. One-to-One Property

Ex.4: Use the properties of logarithms to simplify each expression.

$$
\begin{array}{ll}
\text { a) } \log _{1.5} 1= & \text { b) } 9^{\log _{9} 15}=
\end{array}
$$

Graphs of Logarithmic Functions

$$
\begin{array}{ll}
& f(x)=\log _{b} x \\
& 0<b<1
\end{array}
$$

Comparison of Inverse Functions

$$
f(x)=b^{x} \text { and } f(x)=\log _{b} x
$$

Exponential: $\mathbf{y}=\mathbf{b}^{\mathbf{x}}$
y-int:

Domain:

Range:

Horizontal Asymp.:

Logarithmic: $\mathbf{y}=\log _{b} x$

x-int:

Domain:

Range:

Vertical Asymp.:

Ex. 5: Find the domain, x-intercept, and vertical asymptote of the logarithmic function. Then graph.
a) $y=\log _{2} x$
b) $f(x)=\log _{\frac{1}{2}} x$

Ex. 6: Find the domain, x-intercept, and vertical asymptote of the logarithmic function. Then graph.
a) $f(x)=\log _{3}(x-1)+3$

b) $y=\log _{\frac{1}{2}}(4-x)$

c) $y=-\ln (x-2)$

