Sec. 3.2: Logarithmic Functions and Their Graphs

Definition of a Logarithmic Function

For x > 0, b > 0, and $b \neq 1$, the logarithmic function with base b is denoted $f(x) = log_b x$, where

 $y = log_b x$ if and only if $x = b^y$

Log With Special Base

1) log₁₀ : Common log (log)

2) log_e : Natural Log (In)

The function defined by $f(x) = \log_e x = \ln x, x > 0$ is called the **natural logarithmic function**.

Ex. 1: Write each equation in its equivalent exponential form.

a.
$$2 = \log_5 x$$
 b. $x = \ln 64$

Ex. 2: Write each equation in its equivalent logarithmic form.

$$a. \quad y = e^4$$

$$b. \quad 9 = \sqrt{81}$$

Ex. 3: Evaluate
a)
$$\log_2 16$$
 b) $\log_{169} 13$ c) $\log_6(\frac{1}{36})$

d)
$$\log_{1/3} 27$$
 e) $\log_9 \sqrt{9}$ f) $\log_{100} 10$

g)
$$log_{\frac{16}{9}}\frac{27}{64}$$

Properties of Logarithms

1. $\log_{b} 1 = 0$

2. $\log_{b} b = 1$

3. $\log_b b^x = x$ and $b^{\log_b x} = x$ Inverse Properties

4. If $\log_b x = \log_b y$, then x = y. One-to-One Property

Ex.4: Use the properties of logarithms to simplify each expression.

a)
$$\log_{1.5} 1 =$$
 b) $9^{\log_9 15} =$

Graphs of Logarithmic Functions

f(*x*) =*log*_{*b*}*x b* > 1 0 < *b* < 1

Comparison of Inverse Functions $f(x) = b^x$ and $f(x) = \log_b x$

Exponential: $\mathbf{y} = \mathbf{b}^{\mathbf{x}}$ Logarithmic: $\mathbf{y} = \mathbf{log}_{\mathbf{b}} \mathbf{x}$

y-int: x-int:

Domain:

Domain:

Range:

Range:

Horizontal Asymp.:

Vertical Asymp.:

Ex. 5: Find the domain, x-intercept, and vertical asymptote of the logarithmic function. Then graph.

a)
$$y = \log_2 x$$

b) $f(x) = \log_{\frac{1}{2}} x$

Ex. 6: Find the domain, x-intercept, and vertical asymptote of the logarithmic function. Then graph.

a) $f(x) = \log_3(x-1) + 3$

$$b) \quad y = \log_{\frac{1}{2}}(4-x)$$

c)
$$y = -\ln(x-2)$$

