Sec. 3.1: Exponential Functions and Their Graphs

The exponential function f with base \boldsymbol{b} is denoted by

$$
f(x)=b^{x}
$$

where $b>0, b \neq 1$ and x is any real number.

Ex. 1: Evaluate Exponential Functions. Round your result to three decimal places if needed. Given:

$$
f(x)=3^{x}, g(x)=\left(\frac{1}{4}\right)^{x}, h(x)=10^{x-2}
$$

Find: a a) $f(-\sqrt{2}) \quad$ b) $g(\pi) \quad$ c) $h(-6.4)$

Graphs of Exponential Functions

Ex. 2: Graph each function.
a) $f(x)=5^{x}$

Graphs of Exponential Functions

b) $f(x)=\left(\frac{2}{3}\right)^{x}$

Characteristics of Exponential Functions

$$
f(x)=b^{x}, \quad b>0, \quad b \neq 1
$$

Domain:

Intercept:

Range:

Horizontal Asymptote:
$f(x)$ is increasing if $b>1$.
$f(x)$ is decreasing if $0<b<1$.
One-to-One Function: Yes or No
Transformations Involving Exponential Functions

$$
f(x)=a \cdot b^{(x-h)}+k
$$

Ex.3: Graph each function. Then state the domain and range.
a) $f(x)=3^{2-x}+1$

b) $g(x)=-\left(\frac{1}{4}\right)^{x-3}+1$

The Natural Base e

In many applications, the most convenient choice for a base is the irrational number: $\quad e \approx 2.718281828$...

The function, $f(x)=e^{x}$ is called natural exponential function.
To evaluate: $\boldsymbol{e}^{-3}=$
$e^{2.5}=$

To graph: $f(x)=e^{x}$

$$
g(x)=e^{-x}
$$

Applications: Formulas for Compound Interest

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by:

1) For n compoundings per year: $\boldsymbol{A}=\boldsymbol{P}\left(1+\frac{\boldsymbol{r}}{\boldsymbol{n}}\right)^{n t}$
2) For continuous compounding: $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{e}^{\boldsymbol{r t}}$

Ex.4: If you deposit $\$ 12,000$ into a savings account that pays 6.75% interest, compounded continuously, while another account pays 7% interest, compounded quarterly. Which one of these accounts yields a better return over 5 years?

