Sec. 3.1: Exponential Functions and Their Graphs

The **exponential function** *f* **with base** *b* is denoted by

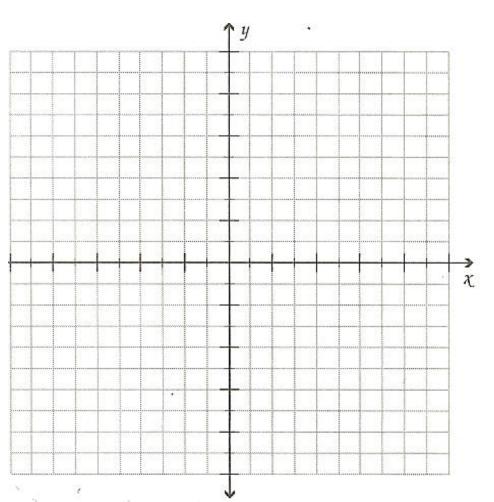
$$f(x) = b^x$$

where b > 0, $b \neq 1$ and x is any real number.

Ex. 1: Evaluate Exponential Functions. Round your result to three decimal places if needed. Given: $f(x) = 3^x, g(x) = \left(\frac{1}{4}\right)^x, h(x) = 10^{x-2}$ Find: a) $f(-\sqrt{2})$ b) $g(\pi)$ c) h(-6.4)

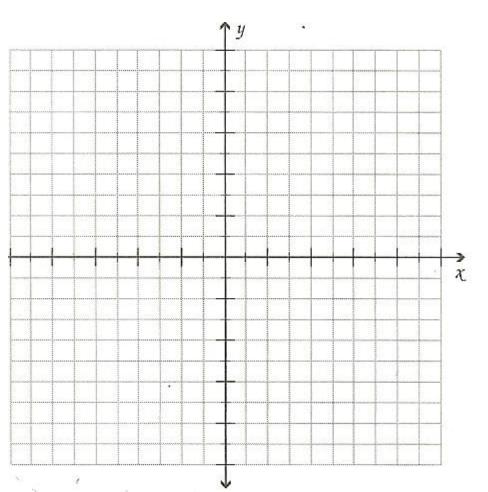
Graphs of Exponential Functions Ex. 2: Graph each function.

 $a) \quad f(x) = 5^x$



Graphs of Exponential Functions

b)
$$f(x) = \left(\frac{2}{3}\right)^x$$



Characteristics of Exponential Functions $f(x) = b^x, b > 0, b \neq 1$

Domain:

Range:

Intercept: Horizontal Asymptote:

f(x) is increasing if b > 1.

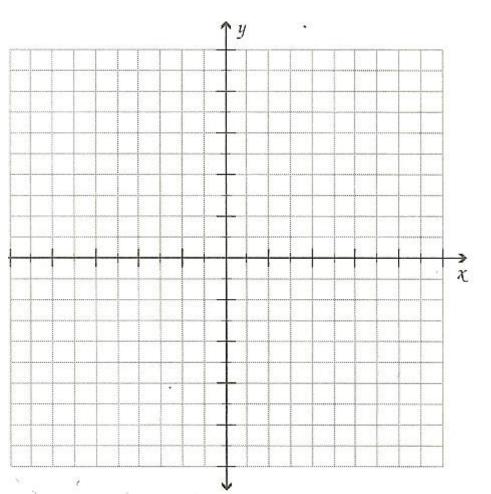
f(x) is decreasing if 0 < b < 1.

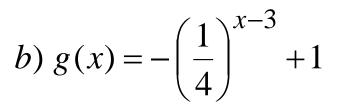
One-to-One Function: Yes or No Transformations Involving Exponential Functions

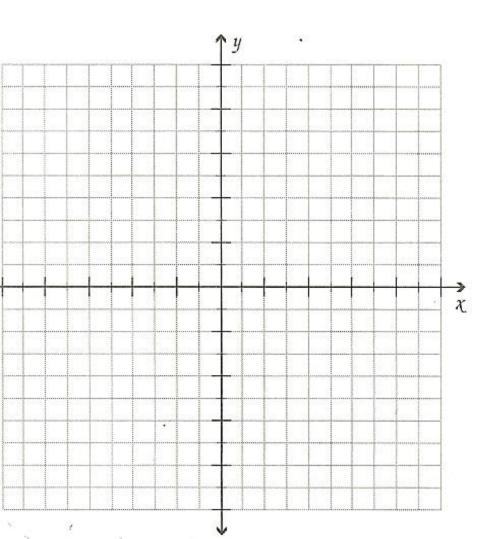
$$f(x) = a \cdot b^{(x-h)} + k$$

Ex.3: Graph each function. Then state the domain and range.

$$a)f(x) = 3^{2-x} + 1$$







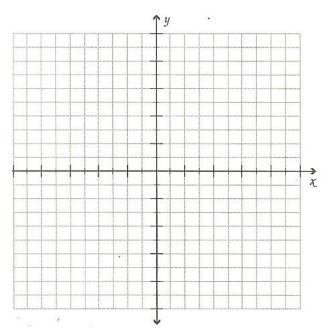
The Natural Base e

In many applications, the most convenient choice for a base is the irrational number: $e \approx 2.718281828...$

The function, $f(x) = e^x$ is called natural exponential function.

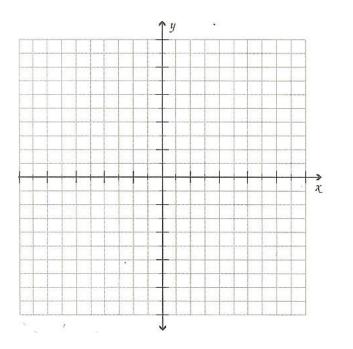
To evaluate: $e^{-3} =$

To graph:
$$f(x) = e^x$$



$$g(x)=e^{-x}$$

 $\rho^{2.5} =$



Applications: Formulas for Compound Interest

After *t* years, the balance *A* in an account with principal *P* and annual interest rate *r* (in decimal form) is given by:

1) For **n** compoundings per year:
$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

2) For continuous compounding: $A = Pe^{rt}$

Ex.4: If you deposit \$12,000 into a savings account that pays 6.75% interest, compounded continuously, while another account pays 7% interest, compounded quarterly. Which one of these accounts yields a better return over 5 years?