Sec. 6.3 Polar Coordinates Components of Polar Coordinates: (r, θ)

Ex. 2: Find three other coordinates (to have two positive and two negative) for point C and E from example 1.

BTWN: $-360^{\circ} < \Theta < 360^{\circ}$ or $-2\pi < \Theta < 2\pi$

Keep degrees in degrees and radians in radians (as given).

C =
$$(-2, \pi/6)$$
 E = $(-3, 120^{\circ})$

Converting Polar to Rectangular $(r, \theta) \longrightarrow (x, y)$ $\cos \theta = \frac{x}{r}$ and $\sin \theta = \frac{y}{r}$

 $x = r\cos\theta \qquad \qquad y = r\sin\theta$

Ex.3: Convert to rectangular form: a) (2, 30°) b) (4, 120°)

Ex.4: Convert to polar form. Find two sets of polarcoordinates for the point for $0 \le \theta < 2\pi$.a) (0, -5)b) (-3, -3)c) $(\sqrt{3}, -1)$

An equation in terms of r and θ is called a polar equation. Ex.5: Change the polar equation to a rectangular equation. (only in terms of x and y, use identities where necessary) a) r = 2 cos θ b) $\theta = 5\pi/3$ c) r = sin 2 θ Ex.6: Change the rectangular equation to a polar equation (in terms of r and θ).

a) $x^2 + y^2 = 16$ b) y = 4 c) 4x + 7y - 2 = 0