Sec. 6.3 Polar Coordinates Components of Polar Coordinates: (r, θ)

Ex 1. Plot each point.
$A=\left(1,45^{\circ}\right)$
$B=(2, \pi / 6)$
$C=(-2, \pi / 6)$
$D=\left(3,120^{\circ}\right)$
$E=\left(-3,120^{\circ}\right)$
$F=\left(-2,-150^{\circ}\right)$

Ex. 2: Find three other coordinates (to have two positive and two negative) for point C and E from example 1.
BTWN: $-360^{\circ}<\Theta<360^{\circ}$ or $-2 \pi<\Theta<2 \pi$
Keep degrees in degrees and radians in radians (as given).
$C=(-2, \pi / 6)$

$$
E=\left(-3,120^{\circ}\right)
$$

Converting Polar to Rectangular

$$
(r, \theta) \longrightarrow(x, y)
$$

$$
\begin{array}{ll}
\cos \theta=\frac{x}{r} & \text { and } \\
x=r \sin \theta=\frac{y}{r} \\
x=\cos \theta & y=r \sin \theta
\end{array}
$$

Ex.3: Convert to rectangular form:
a) $\left(2,30^{\circ}\right)$
b) $\left(4,120^{\circ}\right)$

Converting Rectangular to Polar

$$
\begin{aligned}
& \quad(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{r}, \theta) \\
& r^{2}=x^{2}+y^{2} \\
& r= \pm \sqrt{x^{2}+y^{2}}
\end{aligned} \quad \operatorname{tar} \theta=\frac{\mathrm{y}}{\mathrm{x}}
$$

Ex.4: Convert to polar form. Find two sets of polar coordinates for the point for $0 \leq \theta<2 \pi$.
a) $(0,-5)$
b) $(-3,-3)$
c) $(\sqrt{ } 3,-1)$

An equation in terms of r and θ is called a polar equation. Ex.5: Change the polar equation to a rectangular equation. (only in terms of x and y, use identities where necessary) $\begin{array}{lll}\text { a) } r=2 \cos \theta & \text { b) } \theta=5 \pi / 3 & \text { c) } r=\sin 2 \theta\end{array}$

Ex.6: Change the rectangular equation to a polar equation

 (in terms of r and θ).a) $x^{2}+y^{2}=16$
b) $y=4$
c) $4 x+7 y-2=0$

