Sec. 6.2 Law of Cosines
When the given is SAS or SSS, we use the Law of Cosines.

Ex.1) A Δ has sides 5 cm and 7 cm . The included angle is
115° Find the length of the $3^{\text {rd }}$ side. (round to the nearest $10^{\text {th }}$)

Ex.2) A Δ has sides measuring 5,7 , and 10 cm . Find the measure of the 3 angles. (round to the nearest $10^{\text {th }}$)

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \quad \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}
$$

Altitude vs Median

Creates right angles $\left(90^{\circ}\right)$.
Solve with SOH CAH TOA and/or Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

Usually $\mathrm{x} \neq \mathrm{y}$....but sometimes can, for example in an isosceles or equilateral triangle.

Splits the side its drawn to into 2 equal pieces.
$\mathrm{x}=\mathrm{y}$ always.
The angles are usually not $90^{\circ} \ldots$ but sometimes can be, for example in an isosceles or equilateral triangle.

Ex.3) A Δ has sides 6,12 , and 15 meters. Find the length of the median to the longest side. (round to the nearest $100^{\text {th }}$)

Heron's Area Formula for Area of a Triangle *Use when you have SSS (NO angles)

Area $_{\Delta}=\sqrt{s(s-a)(s-b)(s-c)}$
Where $s=\frac{a+b+c}{2}$ (the semi-perimeter)
Ex4) Find the area of the triangle with sides $5 \mathrm{~cm}, 8 \mathrm{~cm}$, and 10 cm . Round to the nearest $100^{\text {th }}$ (2 decimal places).

To decide which rules to use...
Law of Sines: AAS
ASA
SSA (Ambiguous case: 0, 1, or 2Δ 's)

Law of Cosines: SSS
SAS

Right Triangles: Use "SOH-CAH-TOA" and $a^{2}+b^{2}=c^{2}$

