Pre-Calculus:

Sec. 5.5 (Day 1)

Solving Trigonometric Equations Strategies:

1) Need the same angle (argument): ex. $x, 2 x, 3 x, x / 2$, etc...
2) Try to get the same function if it will help.
3) Look for rules/identities.
4) Beware of the "temptation": ex. $\sin x \tan x=\sin x$
(Do Not Divide out a trig. function!!!)
5) If you have a MULTIPLE angle: ex. $2 x, 3 x, x / 2$, etc... substitute in θ, solve, then substitute back.
6) Graphing calculator. Calculate intersections or zeros, depending on what you input.

Beware!!!

When solving trigonometric equations you sometimes will need to

check for extraneous solutions.

1) Whenever you square both sides of the equation (or raise both sides to any even \# power) check $\mathbf{A L L}$ solutions. Actually plug each answer into the original equation and check if the value works, for each angle found.
2) If the original equation has $\tan x, \cot x, \sec x$ or $\csc x$ (which means any function other than $\sin x$ or $\cos x$) and the answer is a quadrantal angle. Only check the quadrantals because they may be undefined. (You do not need to do this for $\sin x$ and $\cos x$ because they are never undefined).
3) Find all solutions (also known as general solutions) of the equation, in radians. (No calculator)

$$
\sin x=-\frac{\sqrt{3}}{2}
$$

2) Find all solutions of the equation, in radians. (No calculator)

$$
\tan x=-\frac{\sqrt{3}}{3}
$$

3) Find all solutions of the equation, in radians. (No calculator)
$\sqrt{2} \sin x+3=2$

4) Solve on the interval $[0,2 \pi)$

(No calculator)
(Also known as principal solutions).
$2 \sin \theta-\csc \theta=1$
5) Solve on the interval $[0,2 \pi)$. (No calculator) $\sin x \tan x=\sin x$
6) Solve on the interval $[0,2 \pi)$. (No calculator)

$$
\sin ^{2} x-\cos ^{2} x=0
$$

7) Solve:
a) For principal solutions on the interval $[0,2 \pi)$. b) For general solutions.
$2 \sin ^{2} x-1=-\sin x$
8) Solve: a) For principal solutions on the interval $[0,2 \pi)$. b) For general solutions. $\cos ^{2} x+2 \sin x=-2$
