Pre-Calculus Sec. 5.2 Sum and Difference Formulas

The Sum and Difference Formula for Sine

Sum: $sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$ **Difference:** $sin(\alpha - \beta) = sin\alpha cos\beta - cos\alpha sin\beta$

The Sum and Difference Formula for CosineSum: $cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$ Difference: $cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$

The Two Main Purposes for the Sum/Diff. Formulas: 1)Finding the exact values of trigonometric expressions with non common angles.

2)Simplifying expressions to obtain other identities.

Ex. 1: Find the exact value of each of the following: a) $\cos 15^{\circ}$

0

$b) \sin 285^{\circ}$

0

Ex.2: Simplify each of the following expressions. Can you condense using a sum/difference formula? a) $\cos 50^{\circ} \cos 40^{\circ} - \sin 50^{\circ} \sin 40^{\circ}$

b)
$$\sin\frac{11\pi}{30}\cos\frac{\pi}{5} - \sin\frac{\pi}{5}\cos\frac{11\pi}{30}$$

The Sum and Difference Formula for Tangent Sum: $tan(\alpha + \beta)$

Difference: $tan(\alpha - \beta)$

Ex. 3: Find the exact value of each of the following: a) $\tan 195^{\circ}$

Finding the Exact Value

Ex. 4: If
$$\sin \alpha = \frac{12}{13}$$
, $0 < \alpha < \frac{\pi}{2}$, and $\sin \beta = \frac{3}{5}$, $\frac{\pi}{2} < \beta < \pi$

a) Find $cos(\alpha + \beta)$

b) Find $tan(\alpha + \beta)$ for example 4.

Ex. 5: Find the value of the expression without a calculator. $a) \cos \left[\cos^{-1} \left(-\frac{1}{2} \right) + \sin^{-1} 1 \right]$

b)
$$\tan\left(\sin^{-1}\frac{4}{5} - \cos^{-1}\frac{5}{13}\right)$$

The sum/diff. formulas can be used to verify many identities that we have seen, such as the cofunction rule sin $(90^{\circ} - \theta) = \cos \theta$, and to derive new identities.

Ex. 6: Verify the identity:
$$\sec\left(\frac{\pi}{2} - x\right) = \csc x$$

Ex. 7: Write the trigonometric expression as an algebraic expression.

 $\cos(\arccos x - \arcsin x)$

Ex. 8: Find the solutions of the equation in the interval $[0,2\pi)$

$$\cos\left(x + \frac{\pi}{6}\right) - \cos\left(x - \frac{\pi}{6}\right) = 1$$