Pre-Calculus
 Sec. 10.3 (day 2)
 Geometric

Sequences and Series

More Formulas to Memorize:

Formula for the Partial Sum of a Geometric Series:

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Formula for the Infinite Sum of a Geometric Series:
a
$S=\frac{1}{1-r}$ where $|r|<1$ for the series to converge

$$
1-r \quad \text { to a specific value. }
$$

If $|r| \geq 1$ then the series diverges and there is NO infinite sum.

Ex1) Use summation notation to write the sum of $7+14+28+\ldots+896$, then find the sum.

Ex2) Find the sum of the infinite geometric series:

$$
\sum_{n=0}^{\infty} 6\left(\frac{2}{3}\right)^{n}
$$

Ex3) Find the sum of the infinite geometric series:

$$
\sum_{n=1}^{\infty}\left(\frac{5}{3}\right)^{n-1}
$$

Ex4) $1 . \overline{23}$

a) Rewrite the number as an infinite geometric series.
b) Find the rational number representation of the repeating decimal.

Ex5) $0.5 \overline{4}$
a) Rewrite the number as an infinite geometric series.
b) Find the rational number representation of the repeating decimal.

