Pre-Calculus
 Sec. 10.3 (day 1)
 Geometric

Sequences and Series

- A sequence is geometric if the ratios of consecutive terms are the same.
So, in the sequence $a_{1}, a_{2}, a_{3}, a_{4}, \ldots \quad r=\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}$
- All geometric sequences will look exponential, where the base is the common ratio (r)

Formula to Memorize:

Finding the nth term formula for a Geometric Sequence: (explicit or general formula)

$$
a_{n}=a_{1}(r)^{n-1} \quad \text { where } r=\text { common ratio }
$$

Ex1) Write the first 5 terms of the geometric sequence. Find r and write the nth term of the sequence as a function
of n . $a_{1}=30$ and $a_{k+1}=-\frac{2}{3} a_{k}$

Ex2) Find the nth term of the geometric sequence.

$$
a_{1}=5 \text { and } a_{3}=\frac{45}{4}, \quad n=8
$$

Ex3) Find the nth term of the geometric sequence.

$$
a_{1}=8 \text { and } r=-\frac{3}{4}, \quad n=9
$$

Ex4) Find the nth term of the geometric sequence.

$$
a_{3}=\frac{16}{3} \text { and } a_{5}=\frac{64}{27}, \quad n=7
$$

Ex5) Write a formula for the general term (nth term) of the geometric sequence. Then find the indicated nth term.
$4,8,16,32, \ldots . ; 10^{\text {th }}$ term

