Pre-Calculus

 Sec. 10.2 Arithmetic
Sequences and Series

- Objective: To identify an arithmetic sequence and series. To find the explicit (general) formula for its nth term and to find the partial sum of an arithmetic series.
- Definition: A sequence is a set of numbers (terms) arranged in a particular order (separated by commas)
$\{0,2,4,6,8\}$ Finite Sequence $\quad\{1,3,5,7,9,11, \ldots \ldots . .$.$\} Infinite Sequence$
- All arithmetic sequences will look linear, where the slope is the common difference (d)

2 SPECIAL TYPES OF SEQUENCES:

1. Arithmetic - the next term is the previous one plus " d " (common difference $=$ slope)
2. Geometric - the next term is the previous one times " r " (common ratio)

Ex1) State whether the given sequence is arithmetic, geometric, or neither. If arithmetic, give the common difference, and if geometric, give the common ratio.
a) $3,8,13,18, \ldots \ldots$
b) $4,8,16,32, \ldots$
c) $27,-18,12,-8, \ldots$.
d) $1,-3,5,-7, \ldots$

Ex.2) Find the first five terms of the given sequences and state whether the sequence is arithmetic. If so, state the common difference.

$$
a_{n}=3-7 n
$$

Formulas to Memorize:

Finding the nth term of an arithmetic sequence:

$$
a_{n}=a_{1}+d(n-1)
$$

Where: $a_{1}=$ first term

$$
a_{n}=n \text {th term }
$$

- Sequence: $2,4,6,8,10, \ldots \ldots .$.
- Series: $2+4+6+8+10+$

More Formulas to Memorize:

Finding the sum of the first n terms of an Arithmetic Series (Partial Sum):

$$
\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left(a_{1}+a_{n}\right) \text { where } \mathrm{a}_{1}=\text { first term and } \mathrm{a}_{\mathrm{n}}=\text { last term }
$$

OR

$$
\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left[2 a_{1}+d(n-1)\right] \text { Use when you don't know the last term. }
$$

Sigma Notation Σ is another way to find the partial sum of an arithmetic series.

Ex.3) Find the general term formula (the nth term) for the arithmetic sequence, given that:
a) $a_{1}=15, d=4$
b) $a_{1}=-4, a_{5}=16$
c) $a_{5}=190, a_{10}=115$

Ex.4) Write the $1^{\text {st }}$ five terms of the arithmetic sequence:
$a_{4}=16, a_{10}=46$

Ex.5) In an arithmetic sequence:

$$
a_{n}=a_{n-1}+3 \text { and } a_{1}=17 \text {, find the value of } a_{20}
$$

Ex.6) Find the sum of the finite arithmetic series:

$$
1+4+7+10+13+16+19+22+25
$$

Ex.7) Find the sum of the first 100 positive odd integers:

Ex.8) Find the sum of the integers from -10 to 50.

Ex.9) Find the sum of the first 50 terms of the arithmetic sequence: $-6,-2,2,6, \ldots$

Ex.10) Find the sum:

$$
\sum_{i=1}^{32}(-6 i+3)
$$

