Pre-Calculus

Sec. 10.1
Sequences
and

Summation Notation

An infinite sequence is a function whose domain is the set of positive integers. The function values:

$$
a_{1}, a_{2}, a_{3}, \ldots . ., \quad a_{n}, \ldots \ldots .
$$

Are the terms of the sequence. If the domain of a function consists of the first n positive integers only, the sequence is a finite (ends) sequence.

On occasion, it is convenient to begin subscripting a sequence with 0 instead of 1 so that the terms of the sequence become

Ex1) Write the first five terms of the sequence whose general

 term formula is given (Assume n begins with 1).$$
a_{n}=\frac{2 n}{n+1}
$$

A recursive formula defines the nth term of a sequence as a function of the previous term (depending on the prior term or terms).
Ex2) Write the first four terms of the sequence using the given recursive formula.
a) $a_{1}=3$ and $a_{k+1}=2\left(a_{k}-1\right)$
b) $a_{1}=5$ and $a_{n}=3 a_{n-1}-1$

Evaluating Factorials:

0 ! (zero factorial), by definition, is 1 .
$1!=1$
$2!=(2)(1)=2$
$3!=(3)(2)(1)=6$
$4!=(4)(3)(2)(1)=24$
etc...
Ex3) Evaluate each factorial expression:
a) $\frac{8!}{2!6!}$
b) $\frac{2!6!}{3!5!}$

c) $\frac{10!3!}{4!6!}$

d) $\frac{n!}{(n+2)!}$

$$
\text { e) } \frac{(n-2)!}{n!}
$$

It is sometimes useful to find the sum of the first n terms of a sequence. We can use Summation Notation to express the sum.

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

Where i is the index of summation, n is the upper limit of summation, and 1 is the lower limit of summation.

Any letter can be used for the index of summation. The letters i, j, and k are commonly used.

Ex4) Expand and evaluate the sum.

a. $\sum_{i=1}^{6}\left(i^{2}+1\right)$
b. $\sum_{k=4}^{7}\left[(-2)^{k}-5\right]$
c. $\sum_{i=1}^{5} 3$.
d. $\quad \sum_{i=0}^{3}(i+1)^{2}$

Ex5) Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.

$$
\frac{1}{3}+\frac{1}{2}+\frac{3}{5}+\cdots+\frac{6}{7}
$$

Properties of Sums pg. 1009 of textbook

Property

1. $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}, c$ any real number
2. $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$
3. $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}$

Example

$$
\begin{aligned}
& \sum_{i=1}^{4} 3 i^{2}=3 \cdot 1^{2}+3 \cdot 2^{2}+3 \cdot 3^{2}+3 \cdot 4^{2} \\
& 3 \sum_{i=1}^{4} i^{2}=3\left(1^{2}+2^{2}+3^{2}+4^{2}\right)=3 \cdot 1^{2}+3 \cdot 2^{2}+3 \cdot 3^{2}+3 \cdot 4^{2} \\
& \text { Conclusion: } \sum_{i=1}^{4} 3 i^{2}=3 \sum_{i=1}^{4} i^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \sum_{i=1}^{4}\left(i+i^{2}\right)=\left(1+1^{2}\right)+\left(2+2^{2}\right)+\left(3+3^{2}\right)+\left(4+4^{2}\right) \\
& \sum_{i=1}^{4} i+\sum_{i=1}^{4} i^{2}=(1+2+3+4)+\left(1^{2}+2^{2}+3^{2}+4^{2}\right) \\
&=\left(1+1^{2}\right)+\left(2+2^{2}\right)+\left(3+3^{2}\right)+\left(4+4^{2}\right) \\
& \text { Conclusion: } \sum_{i=1}^{4}\left(i+i^{2}\right)=\sum_{i=1}^{4} i+\sum_{i=1}^{4} i^{2}
\end{aligned} \text { }
\end{aligned}
$$

$$
\sum_{i=3}^{5}\left(i^{2}-i^{3}\right)=\left(3^{2}-3^{3}\right)+\left(4^{2}-4^{3}\right)+\left(5^{2}-5^{3}\right)
$$

$$
\sum_{i=3}^{5} i^{2}-\sum_{i=3}^{5} i^{3}=\left(3^{2}+4^{2}+5^{2}\right)-\left(3^{3}+4^{3}+5^{3}\right)
$$

$$
=\left(3^{2}-3^{3}\right)+\left(4^{2}-4^{3}\right)+\left(5^{2}-5^{3}\right)
$$

$$
\text { Conclusion: } \sum_{i=3}^{5}\left(i^{2}-i^{3}\right)=\sum_{i=3}^{5} i^{2}-\sum_{i=3}^{5} i^{3}
$$

