Sec. 6.7: Dot Product

Dot Product: Given 2 vectors in component form, $\mathbf{u}=\left\langle\mathrm{x}_{1}, \mathrm{y}_{1}\right\rangle$ and $\mathbf{v}=\left\langle\mathrm{x}_{2}, \mathrm{y}_{2}\right\rangle$, their dot product is:
$\left\langle x_{1}, y_{1}\right\rangle \bullet\left\langle x_{2}, y_{2}\right\rangle=x_{1} x_{2}+y_{1} y_{2}$

This product is a scalar, rather than a vector.

If $\mathbf{u} \cdot \mathbf{v}=\mathbf{0}$, the vectors \mathbf{u} and \mathbf{v} are orthogonal (perpendicular).

Ex1: Find $\langle 2,3\rangle$ • $\langle-4,5\rangle$

Ex2: Find $\mathbf{u} \cdot \mathbf{v}$

Given $\mathbf{u}=i-2 j$ and $\mathbf{v}=6 i+3 j$

2 vectors are parallel if one is the scalar product of the other one.
so..... <2,1> and <4, 2 >

$$
2<2,1>\text { factor }
$$

Ex.3: Are the vectors orthogonal, parallel, or neither?
a) $\langle 4,12\rangle$ and $\langle 12,36\rangle$
b) $\langle 2,-3\rangle$ and $\langle 6,4\rangle$

Ex.4:Find the value of k so that the vectors $5 i+k j$ and $2 i+3 j$

a) Parallel:
b) Orthogonal:

Finding Angles Between 2 Vectors

$$
\cos \theta=\frac{\vec{u} \bullet \stackrel{\rightharpoonup}{v}}{|\vec{u}| \vec{v} \mid} \text { for } 0^{\circ} \leq \theta \leq 180^{\circ}
$$

Ex.5: $\mathbf{u}=\langle 1,3\rangle$ and $\mathbf{v}=\langle-2,4\rangle$, find the measure of the angle between \mathbf{u} and \mathbf{v}.

Ex.6: Given $A(3,1), B(6,2)$, and $C(4,5)$ form $\triangle A B C$, find the measure of the interior angles.

