Pre-Calculus

 Sec. 1.8 Inverse Functions
Definition of the Inverse Function

Given $f(x)$ and $g(x)$:

If $f(g(x))=x$ and $g(f(x))=x$,
then the function g is the inverse of the function f.

We use $f^{-1}(x)$ as inverse notation.

The domain of f is equal to the range of f^{-1}, and vice versa.

A function that has an inverse is also called a one-to-one Function (passes both the VLT and the HLT).

To find the inverse of a set of points: switch x with y. ie. $\{(1,2),(3,4)\} \longrightarrow\{(2,1),(4,3)\}$

One-to-One Function: a f (which already passes the vertical line test) must also pass the horizontal line test (HLT) (Now Y's do not repeat either).

A function f has an inverse (f^{-1}), iff it is one-to-one (passes both the VLT and the HLT)

To "find" the inverse of an equation, that is a one-to-one function, you will switch $x \& y$, then solve for y.

Ex. 1

Horizontal Line Test and One-to-One Functions
Part 1 - Does this function have an inverse function? (I.E. is it One-to-One?)

Part 2 - Use a graphing calculator to graph the function and determine if it is One-To-One (I.E. it has an inverse function)

$$
h(x)=-2 x \sqrt{16-x^{2}}
$$

In Exercises 9-14, (a) show that f and g are inverse functions algebraically and (b) use a graphing utility to create a table of values for each function to numerically show that f and g are inverse functions.
10. $f(x)=\frac{x-9}{4}, g(x)=4 x+9$

Ex. 3
In Exercises 15-20, show that f and g are inverse functions algebraically. Use a graphing utility to graph f and g in the same viewing window. Describe the relationship between the graphs.
18. $f(x)=9-x^{2}, \quad x \geq 0 ; \quad g(x)=\sqrt{9-x}$

Ex. 4

In Exercises 81-88, use the graphs of $y=f(x)$ and $y=g(x)$ to evaluate the function.

84. $g(f(-4))$

87. $\left(g \circ f^{-1}\right)(2)$

Ex. 5 a)Find the inverse of:
 $$
f(x)=\frac{3}{2+5 x}
$$

b) Give the domain and range of $f(x)$ and $f^{-1}(x)$ in interval notation.

Ex. 6 a) Find $f^{-1}(x)$ for

$$
f(x)=\frac{2 x+3}{x-1}
$$

b) Give the domain and range of $f(x)$ and $f^{-1}(x)$ in interval notation.

Ex. 7 a) Find the inverse of
 $$
f(x)=\sqrt{5-x}
$$

b) Give the domain and range of $f(x)$ and $f^{-1}(x)$ in interval notation.

Ex. 8 Given:

$$
f(x)=\frac{1}{8} x-3, \quad g(x)=x^{3}, \quad h(x)=2 x+1
$$

a) Find $(f \circ g)^{-1}(5)$

$$
f(x)=\frac{1}{8} x-3, \quad g(x)=x^{3}, \quad h(x)=2 x+1
$$

b) Find $h(g(f(8)))$

