Pre-Calculus Sec. 4.5 Graphs of Sine and Cosine

The Graph of $f(x) = \sin x$

This graph has ______ symmetry, and is an _____

The Graph of $f(x) = \cos x$

This graph has ______ symmetry, and is an ______ function.

Recall:

- *y* = *c f*(*x*): Vertically stretches or shrinks.
- *y* = *f*(*cx*): Horizontally stretches or shrinks.

Because these change our "Basic" graphs, our basic **period** and **amplitude** may also change.

If $y = a \sin bx$ and $y = a \cos bx$; where $a \neq 0$, b > 0,

Then: Amplitude =
$$|a|$$
 and Period = $\frac{2\pi}{|b|}$

 $f(x) = a \sin (bx - c) + d \quad or \quad f(x) = a \cos (bx - c) + d$ $f(x) = d + a \sin (bx - c) \quad or \quad f(x) = a \cos b(x - \frac{c}{b}) + d$

Horizontal translations (left or right): Graphs are shifted by an amount \underline{C} (this # is the **phase shift**).

b

Vertical translations (up or down): d units upward or downward, the graph oscillates about the horizontal line y = d instead of the x-axis.

Ex.1: Graph
$$f(x) = 3 + 2\sin\left(x + \frac{\pi}{3}\right)$$
 Amplitude:
Period:
Phase Shift:

1st: Find increment (¼ Period):

2nd: Find 5 key x-values:

1st: Find increment (¼ Period):

2nd: Find 5 key x-values:

Ex.3: Graph $y = -2 \sin \left(4x - \frac{\pi}{3}\right) + 5$ Amplitude: Period: Phase Shift:

1st: Find increment (¼ Period):

2nd: Find 5 key x-values:

