Pre-Calculus Sec. 4.5
 Graphs of Sine and Cosine

The Graph of $f(x)=\sin x$

Domain:

Range:

Period:

\qquad symmetry, and is an \qquad function.

The Graph of $f(x)=\cos x$

Period:

This graph has \qquad symmetry, and is an \qquad function.

Recall:

- $y=c f(x)$: Vertically stretches or shrinks.
- $y=f(c x)$: Horizontally stretches or shrinks.

Because these change our "Basic" graphs, our basic period and amplitude may also change.

If $y=a \sin b x$ and $y=a \cos b x$; where $a \neq 0, b>0$,

Then: Amplitude $=|a|$ and Period $=\frac{2 \pi}{|b|}$
$f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$
$f(x)=d+a \sin (b x-c)$ or $f(x)=a \cos b\left(x-\frac{c}{b}\right)+d$

Horizontal translations (left or right): Graphs are shifted by an amount $\frac{c}{b}$ (this \# is the phase shift).
b
Vertical translations (up or down): d units upward or downward, the graph oscillates about the horizontal line $y=d$ instead of the x-axis.

Ex.1: Graph $f(x)=3+2 \sin \left(x+\frac{\pi}{3}\right)$ Amplitude:

Period:

Phase Shift:
$1^{\text {st }}$: Find increment ($1 / 4$ Period):
$2^{\text {nd }}$: Find 5 key x-values:

Ex.2: Graph $f(x)=-3 \cos \left(x-\frac{\pi}{5}\right)+1 \quad$ Amplitude: Period:
 Phase Shift:

$1^{\text {st }}:$ Find increment ($1 / 4$ Period):
$2^{\text {nd }}$: Find 5 key x-values:

Ex.3: Graph $\quad y=-2 \sin \left(4 x-\frac{\pi}{3}\right)+5 \quad$ Amplitude:

Period:
Phase Shift:
$1^{\text {st }}:$ Find increment ($1 / 4$ Period):
$2^{\text {nd }}$: Find 5 key x-values:

