Review:

$$
\text { 1. Graph: } \begin{cases}x, & \text { if } x<2 \\ |x-2|, & \text { if } x=2 \\ x+1, & \text { if } 2<\mathrm{x}<5 \\ -1, & \text { if } x \geq 5\end{cases}
$$

2. Odd, even, or neither? Show your work, leave no ().

$$
\text { a) } f(x)=-\frac{2 x}{\sqrt{5+x^{2}}} \quad \text { b) } g(x)=3 x^{3}+x-2
$$

3. Find the domain in interval notation:

$$
f(x)=\frac{3 x}{\sqrt{9-x^{2}}}
$$

Sec. 1.7 Arithmetic Combinations of Functions 4 Basic Operations:

Given $f(x)$ and $g(x)$:
Sum:

$$
(f+g)(x)=f(x)+g(x)
$$

Difference: $\quad(f-g)(\boldsymbol{x})=f(\boldsymbol{x})-g(\boldsymbol{x})$
Product:

$$
(f g)(\boldsymbol{x})=f(\boldsymbol{x}) g(\boldsymbol{x})
$$

Quotient:

$$
\frac{f}{g}(x)=\frac{f(x)}{g(x)}, \text { provided } g(x) \neq 0 .
$$

Ex. 1: If $\quad f(x)=2 x+6$ and $g(x)=x^{2}+5 x+6$
find: find:
a) $(f-g)(x)$
a) $(f-g)(0)$

$$
f(x)=2 x+6 \quad g(x)=x^{2}+5 x+6
$$

c) $\frac{f}{g}(x)$ g

$$
\text { d) } \frac{f}{(-3)}
$$

$$
g
$$

$$
f(x)=2 x+6 \quad g(x)=x^{2}+5 x+6
$$

e) $\frac{f}{g}(0)$
g

Sec. 1.7 Composite Functions

$(f \circ g)(\boldsymbol{x})=f(g(\boldsymbol{x})):$ Read as " f of $g(x)$ "

Means: all of the \boldsymbol{x} 's in the f function are replaced by the equation of $g(x)$

Vice versa for $(g \circ f)(x)$.

Finding the Domain

For Operations:,,$+- \times, \div \mid$ For Composition: f og \& g of

The domain comes from $\boldsymbol{a l l}$ the functions involved and the result.

The overall domain includes both the result's and the "inside" function's domain restrictions. NOT THE OUTSIDE FUNCTION!

Ex.1: If $f(x)=\frac{2}{x+3}$ and $\boldsymbol{g}(\boldsymbol{x})=\frac{1}{\boldsymbol{x}}$
Find $f \circ g$ and its domain.

Ex. 2: If $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$ and $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2}+3$,

a) Find g of and its domain.
b) Find g of (4)
c) Find $g \circ f(-1)$

Ex. 3: If $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{2 x+1}$

Find $f \circ g$ and its domain.

