PreCalculus

 Sec. 1.3Increasing, Decreasing, \& Constant

- Where $\operatorname{does} f(x)=0$: list the x-intercept(s).
- Increasing part: state the x-values where the graph rises from left to right. (excluding the endpoints...never use brackets)
-Decreasing part: state the x-values where the graph falls from left to right. (excluding the endpoints...never use brackets)
-Constant part: state the x -values where the graph stays a horizontal line. (excluding the endpoints...never use brackets)

-USE OPEN INTERVALS ONLY!!!

Use the Graph to find the following:

Decreasing:

Increasing:

Use a graphing utility to graph the function and determine the intervals on which the function is increasing, decreasing, and constant.

$f(x)=-|x+4|-|x+1|$

Increasing on:

Constant on:

Decreasing on:

PreCalculus

Sec. 1.3
Relative Max/Min

- Relative Maximum or Minimum value: Usually expressed as an ordered pair: (x, y). For Rel. Maximum visualize: "Top" of a Mountain. For Rel. Minimum visualize: "Bottom" of a Valley. Relative max./min. exclude the endpoints of the graph. Absolute max./min. may be an endpoint
- Relative Maxima or Minima: the relative max. or min. in plural form. A graph may have multiple relative maxima or minima.

1. Find $f(0)$.

2. What is the value of f at $\mathrm{x}=1$?

What are the coordinates?
3. Where is $f(x) \geq 0$?

State the x - values, interval notation.
4. Relative Maximum value :

5. Relative Minimum value :
6. Where is the graph increasing?

State the x - values, interval notation.
7. Where is the graph decreasing?

State the x - values, interval notation.
$h(x)=x^{3}-3 x^{2}+10$
Use a graphing utility to graph the function and find the following: (Round answers to nearest thousandth)

1) Relative maxima coordinates:
2) Relative minima coordinates:
3) Increasing
4) Decreasing
5) Sketch the graph that appears in your window with the maxima and minima labeled.

$$
g(x)=-x^{3}+2 x-5
$$

Use a graphing utility to graph the function and find the following: (Round answers to nearest thousandth)

1) Relative maxima coordinates:
2) Relative minima coordinates:
3) Increasing
4) Decreasing
5) Zero(s)
6) Where is $g(x)>0$?
$f(x)=\frac{1}{64} x^{5}-\frac{1}{3} x^{3}+x$

Use a graphing utility to graph the function and find the following: (Round answers to nearest thousandth)

1) Relative maxima coordinates:
2) Relative minima coordinates:
3) Increasing
4) Decreasing
5) Sketch the graph that appears in your window with the maxima and minima labeled.
6) Rel Max :(-3.421, 2.603); (1.046, 0.684)
7) Rel Min : $(-1.046,-0.684) ;(3.421,-2.603)$
8) Incre : $(-\infty,-3.421) \cup(-1.046,1.046) \cup(3.421, \infty)$
9) Decre: $(-3.421,-1.046) \cup(1.046,3.421)$

To find a max or min:

1. Use the $\mathbf{2}^{\text {nd }}$ key, followed by the TRACE (CALC) key.
2. Choose 3: minimum or 4: maximum,
3. For Left bound, use the arrow to move the "blinking X" just to the left of the Minimum, ENTER.
4. Now repeat to the right for Right bound, ENTER.
5. Guess? ENTER
