Pre-Calculus: Sec. 1.3 The Difference Quotient

 Ex1) Given: $f(x)=2 x^{2}-x+3$Find the Difference Quotient (simplified) : $\frac{f(x+h)-f(x)}{h} ; h \neq 0$

Ex2) Given: $f(x)=\sqrt{x}$
Find the Difference Quotient (simplified) : $\frac{f(4+h)-f(4)}{h} ; h \neq 0$

Ex3) Given: $f(x)=x^{3}-8 x$
Find the Difference Quotient (simplified) : $\frac{f(x+h)-f(x)}{h} ; h \neq 0$

Sec. 1.3 Even or Odd Functions

 To Determine Even or Odd Functions...- Always find $f(-x)$ first!!! Then...

If $f(-x)=f(x)$: If $f(-x)=-f(x)$:
(Same as Original)
Then the function is Even
The graph of an Even function has y-axis symmetry.
(both ($-x, y$) and (x, y) are on the graph)

Then the function is Odd
The graph of an Odd function has origin symmetry. (both (x, y) and ($-x,-y$) are on the graph)

Find the coordinates of a $2^{\text {nd }}$ point on the graph:

Given:

Even Function

Odd Function
$(-2,3)$
$(6,-1)$
$(-5,-2)$

Ex. 1: Algebraically determine whether each of the following functions are even, odd, or neither.

$$
\text { a) } h(x)=\frac{-x}{\sqrt{7+x^{2}}}
$$

b) $f(x)=\frac{x-1}{x-2 x^{2}}$

$$
\text { c) } g(x)=2 x\left|x^{2}-3\right|
$$

d) $f(x)=-2 x^{3}-x+3$

e) $r(x)=\frac{3 x^{2}-7}{|x|+5}$

Review: Find the domain for the following functions.
Express your answers in set and interval notation.

$$
\text { a) } f(x)=\sqrt{49-x^{2}}
$$

$$
\text { b) } g(x)=\frac{2 x}{\sqrt{x-3}}
$$

$$
\text { c) } h(x)=\frac{3 x}{\sqrt{x^{2}+2}}
$$

$$
\text { d) } k(x)=2+\log _{5}(x-1)
$$

$$
\text { e) } f(x)=\frac{-7 x}{\log _{3}(x-5)}
$$

