Pre-Calculus Sec. 1.2: Functions \& Graphs

Relation: any ordered pairs. example: (x, y)
Domain: all first components or inputs (all x-values)
Range: all second components or outputs (all y-values)

Function: Each element in the domain (x's) corresponds to exactly one element in the range (y 's)...... So..... x-values may not repeat! There can be only one y per x-value..

Function Notation: $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x}), \mathrm{p}(\mathrm{x})$, etc.....

Does the relation describe a function?

Table:	
2	3
-1	4
4	5

The Vertical Line Test for Functions

- If any vertical line intersects a graph in more than one point, the graph does not define y as a function.

Use the vertical line test to identify graphs in which \boldsymbol{y} is a function of \boldsymbol{x}.

C.

d.

Determine whether the equation represents y as a function of x.

- Solve for y, if the equation is preceded by a \pm this indicates that for a given value of x there corresponds 2 values of y. Plug in an x value to test the number of y-values generated.

$$
\text { 1) } x=y^{2}+1
$$

$$
\text { 2) } y=\sqrt{x+5}
$$

3) $|y|=4-x$

Evaluate the functions as specified.

A) $f(x)=\sqrt{x+8}+2$

$$
f(-8)=
$$

$$
f(1)=
$$

$$
f(x-8)=
$$

B)

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{cc}
2 x^{2}-1, & x \leq 0 \\
4 x+1, & x>0
\end{array}\right. \\
& g(-1)= \\
& g(4)= \\
& g(0.25)=
\end{aligned}
$$

c) $f(x)=x^{2}+3 \mathrm{x}+5$

$$
f(x+3)=
$$

d) $g(x)=-x^{2}+2 x$

$$
g(-5)=
$$

$$
g(-x)=
$$

PreCalculus Sec. 1.3 Piecewise Functions

Definition of a Piecewise Function: A function that is defined by two (or more) equations over a specified domain is called a piecewise function.

Graphing Piecewise Functions:

1) Find the coordinates of the endpoints for each equation with the specific domain. Make a table for each "piece".
2) Sketch the shape of the graph for each equation by connecting its endpoints.
3) Plot a few extra points to obtain the shape if necessary.

Ex.2: Graph by hand. Make a Table for each piece.

a) $f(x)= \begin{cases}x-1 & \text { if } x<0 \\ x^{2}-2 x-3 & \text { if } 0 \leq x \leq 3 \\ 0 & \text { if } x>3\end{cases}$

b) $f(x)= \begin{cases}x^{2} & \text { for } x<1 \\ 5 & \text { for } x=1 \\ 1-x & \text { for } x>1\end{cases}$

