Extra Practice Sec. 10.1, 10.2 & 10.5

Find the first four terms for each sequence.

1.
$$a_1 = 2$$

 $a_n = 5 - 2a_{n-1}$

2.
$$a_1 = 2$$

 $a_n = 2^{n-1} + 1$

Write a possible explicit rule for the n^{th} term of each sequence.

4.
$$\frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \dots$$

Write the explicit rule for:

6. Simplify:
$$\frac{n!(n-3)!}{(n+1)!(n-5)!}$$

Find the 9th term of the arithmetic sequence:

8. Expand using Pascal's Triangle: $(2x - 5y)^4$

Find the 9th term of the arithmetic sequence.

9.
$$a_4 = 5$$
 $a_6 = 11$

10. Find the binomial coefficient using: $_{12}C_5$

Find the indicated Sum. For the Arithmetic series:

11.
$$S_{13}$$
 for $4 + 7 + 10 + 13 + \cdots$

Find the missing term of the arithmetic sequence.

Answers: Extra Practice 10.1, 10.2, and 10.5

1) 2, 1, 3, -1 2) 2, 3, 5, 9 3)
$$a_n = 5n + 1$$
 4) $a_n = \frac{n}{n+2}$ 5) $S_n = 2n + 1$ or $\sum_{n=1}^{\infty} 2n + 1$ 6) $\frac{(n-3)(n-4)}{n+1}$ 7) $a_9 = 109$

8)
$$16x^4 - 160x^3y + 600x^2y^2 - 1000xy^3 + 625y^4$$
 9) a_9 =20 10) 792 11) $S_{13} = 286$ 12) 17, 20