Chapter 10 Important Formulas

Gaussian Formula:
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Sum of $\mathbf{1}^{\text {st }} \mathbf{n}$ squares:
$\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
Finding the binomial coefficient of a specific term: ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$
Finding the specific term in binomial expansion of $(a+b)^{n}: t_{r+1}={ }_{n} C_{r}(a)^{n-r}(b)^{r}$
Finding the nth term of an Arithmetic sequence : $a_{n}=a_{1}+d(n-1)$
The sum of the first n terms of an Arithmetic Series: (Partial Sum):
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left(a_{1}+a_{n}\right)$ where $\mathrm{a}_{1}=$ first term and $\mathrm{a}_{\mathrm{n}}=$ last term
OR
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left[2 a_{1}+d(n-1)\right]$ Use when you don't know the last term!!.
Finding the nth term of a Geometric sequence: $a_{n}=a_{1}(r)^{n-1}$
The sum of the first n terms of a Geometric Series: (Partial Sum):

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

The infinite sum of a Geometric Series: $S=\frac{a_{1}}{1-r}$ where the $|r|<1$

