Chapter 10 Important Formulas

Gaussian Formula:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Sum of 1st n squares:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Finding the binomial coefficient of a specific term: ${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$

Finding the specific term in binomial expansion of $(a + b)^n$: $t_{r+1} = {}_n C_r(a)^{n-r}(b)^r$ Finding the nth term of an Arithmetic sequence : $a_n = a_1 + d(n-1)$

The sum of the first n terms of an Arithmetic Series: (Partial Sum):

$$S_n = \frac{n}{2} \left(a_1 + a_n \right)$$
 where a_1 = first term and a_n = last term
OR

 $S_n = \frac{n}{2} \left[2a_1 + d(n-1) \right]$ Use when you don't know the last term!!.

Finding the nth term of a Geometric sequence: $a_n = a_1(r)^{n-1}$

The sum of the first n terms of a Geometric Series: (Partial Sum):

$$S_n = \frac{a_1\left(1 - r^n\right)}{1 - r}$$

The infinite sum of a Geometric Series: $S = \frac{a_1}{1-r}$ where the |r| < 1