Chapter 10 Review Worksheet \#2

1. Write the first five terms of the sequence. (Assume that n begins with 1.)
$a_{n}=-7 n+8$
2. Write an expression for the apparent nth term of the sequence. (Assume that n begins with 1 .) $5,8,11,14,17$
3. Write the first five terms of the sequence defined recursively. $a_{1}=-15, a_{k+1}=a_{k}-3$
4. Simplify the factorial expression.
$\frac{11!}{8!}$
5. Find the sum of the infinite series.

$$
\sum_{i=1}^{\infty} 4\left(\frac{1}{4}\right)^{i}
$$

6. Determine whether the sequence is arithmetic. If so, find the common difference.
$8,13,18,23,28$
7. Find a formula for a_{n} for the arithmetic sequence.
$a_{4}=-23, a_{7}=-44$
8. Write the first five terms of the arithmetic sequence.
$a_{4}=13, a_{12}=37$
9. Find the indicated nth partial sum of the arithmetic sequence.
$1.9,4.8,7.7,10.6, \ldots ., \mathrm{n}=20$
10. Find the indicated nth term of the geometric sequence.

7 th term: $5,20,80, \ldots$. Also find the sum of the first 7 terms
11. Use summation notation to write the sum.

$$
3-6+12-\ldots+192
$$

12. Find the sum of the infinite geometric series.

$$
\sum_{n=0}^{\infty} 4\left(\frac{1}{6}\right)^{n}
$$

13. Change the decimal to a common fraction.
$.9 \overline{27}$
14. Find the sum of the infinite geometric series: $-\frac{3}{2}+\frac{15}{8}-\frac{75}{32}+\ldots \ldots$.
15. Given $x^{2}, 3 x-5,16, .$. Find the value(s) of x which make this a geometric sequence.
16. Expand: $(2 x-1)^{6}$

Answers:1) $1,-6,-13,-20,-27$ 2) $a_{n}=3 n+2$ 3) $-18,-21,-24,-27$ 4) 9905$) \frac{4}{3}$ 6) Arithmetic, $\mathrm{d}=5$
7) $a_{n}=5-7 n$ 8) $4,7,10,13,16$ 9) $S_{20}=589$ 10) $a_{7}=20,480 \mathrm{~S}_{7}=27,305$ 11) $\sum_{\mathrm{n}=1}^{7}\left(-\frac{3}{2}\right)(-2)^{n}$
12) $\left.\mathrm{S}=\frac{24}{5} 13\right) .9+[.027+.00027+.0000027+\ldots]$
13) $S=51 / 55$ 14) Since $|r| \geq 1$, the series diverges and therefore no infinite geometric sum
15) $\mathrm{x}=-5$, and 5/7 16) $64 x^{6}-192 x^{5}+240 x^{4}-160 x^{3}+60 x^{2}-12 x+1$

