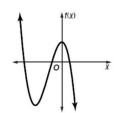
Algebra II **REVIEW WS – Unit 5 QUIZ #1 Analyzing & Sketching Polynomial Functions including Factoring**

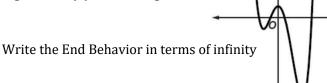
Name____


Prd

1. Which describes the end behavior of $f(x) = -4x^2 + 1$?

- A) as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +\infty$
- B) as $x \to -\infty$, $f(x) \to +\infty$ and as $x \to +\infty$, $f(x) \to -\infty$
- C) as $x \to -\infty$, $f(x) \to +\infty$ and as $x \to +\infty$, $f(x) \to +\infty$
- D) as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to -\infty$

2. State the number of real zeros for the function whose graph is shown at the right.


- **A.** 0
- B. 2
- **C.** 3
- D. 1

State the number of turning points. 3. What is the degree of the function?

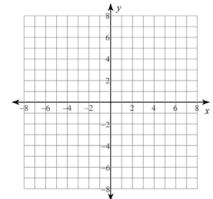
MAX of ____ Turning Points

Sign on LC (a)____ Degree___

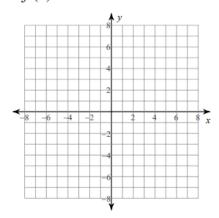
4. Complete the statements for the graph provided.

Number of MAX Turning Points_____

Sign on LC (*a*)____ Degree_____


- 5. FACTOR the following expressions.
- a) $x^5 81x$ b) $x^4 + x^3 4x^2 4x$

as $x \longrightarrow \underline{\hspace{1cm}}, y \longrightarrow \underline{\hspace{1cm}}$


as $x \longrightarrow \underline{\hspace{1cm}}, y \longrightarrow \underline{\hspace{1cm}}$

6. GRAPH each of the following functions with the basic shape of each graph. Show all work used to find the end behavior, the y-intercept, ALL the zeros (x-intercepts), their multiplicity and behavior at the x-axis (bounce or cross).

$$f(x) = 2x^3 - 3x^2$$

$$f(x) = x^4 + x^3 - 4x^2 - 4x$$

Practice Worksheet: End Behavior & Graphing Polynomials

WITHOUT graphing, identify the end behavior of the polynomial function. (HINT: Check for Standard Form)

$v = 2x^5 + 7x^2 + 4x$

MAX # of Turning Points (curves):_____

Sign of LC (*a*):_____ Degree:_____

as
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$

as
$$x \to +\infty$$
, $y \to$

10]
$$y = 6 - 2x - 4x^2 + 5x^3$$

Standard Form:

MAX # of Turning Points (curves):_____

Sign of LC (*a*):_____ Degree:_____

as
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$

as
$$x \to +\infty$$
, $y \to$

81
$$y = -5x$$

MAX # of Turning Points (curves):_____

Sign of LC (*a*):_____ Degree:_____

as
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$

as
$$x \to +\infty$$
, $y \to$ _____

11]
$$y = 1 + 2x^6 - 4x^2 - 2x^6$$

Standard Form:

MAX # of Turning Points (curves):_____

Sign of LC (*a*):_____ Degree:_____

as
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$

as
$$x \to +\infty$$
, $y \to$

91
$$v = 12x^4 - 2x + 5$$

MAX # of Turning Points (curves):_____

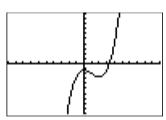
Sign of LC (*a*):_____ Degree:_____

as
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$

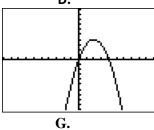
as
$$x \to +\infty$$
, $y \to$

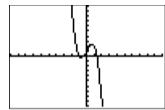
12]
$$y = 4x + 2 - 5x^6$$

Standard Form:


MAX # of Turning Points (curves):_____

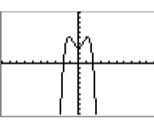
Sign of LC (*a*):_____ Degree:_____


as
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$

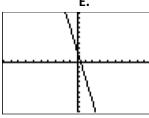

as
$$x \to +\infty$$
, $y \to \underline{\hspace{1cm}}$

Match the polynomial function with its graph WITHOUT using a graphing calculator. Think about how the degree of the polynomial affects the shape of the graph.

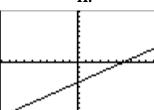
D.



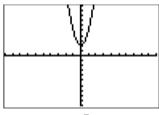
 $y = -x^2 + 4x$

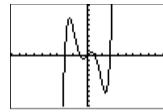

14]
$$y = -x^4 + 3x^2 + 3$$

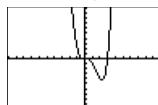
$$_{15} y = \frac{1}{2}x^4 - \frac{3}{2}x^3$$


В.

E.


H.




$$_{17} y = 3x^2 + 2$$

_____18] $y = \frac{1}{5}x^5 - 2x^3 + \frac{9}{5}x$ _____21] y = -5x + 2

C.

_____16] $y = -2x^3 + 3x + 1$ _____19] $y = \frac{1}{3}x^3 - x^2 - \frac{4}{3}$

$$20$$
] $y = \frac{2}{3}x - 4$