\qquad Analyzing \& Sketching Polynomial Functions including Factoring

1. Which describes the end behavior of $f(x)=-4 x^{2}+1$?
A) as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow+\infty$
B) as $x \rightarrow-\infty, f(x) \rightarrow+\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow-\infty$
C) as $x \rightarrow-\infty, f(x) \rightarrow+\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow+\infty$
D) as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow-\infty$
2. State the number of turning points.

What is the degree of the function?
MAX of \qquad Turning Points

2. State the number of real zeros for the function whose graph is shown at the right.
A. 0
B. 2
C. 3
D. 1

4. Complete the statements for the graph provided.

Number of MAX Turning Points \qquad

Sign on LC $(\boldsymbol{a})_{\ldots} \quad$ Degree \qquad
5. FACTOR the following expressions.
a) $x^{5}-81 x$
b) $x^{4}+x^{3}-4 x^{2}-4 x$
as $x \longrightarrow \longrightarrow \quad y \longrightarrow$
as $x \longrightarrow$ \qquad $y \rightarrow$
6. GRAPH each of the following functions with the basic shape of each graph. Show all work used to find the end behavior, the y -intercept, ALL the zeros (x-intercepts), their multiplicity and behavior at the x -axis (bounce or cross).

$$
f(x)=x^{4}+x^{3}-4 x^{2}-4 x
$$

Practice Worksheet: End Behavior \& Graphing Polynomials
WITHOUT graphing, identify the end behavior of the polynomial function. (HINT: Check for Standard Form)

7] $y=2 x^{5}+7 x^{2}+4 x$	8] $y=-5 x$	9] $y=12 x^{4}-2 x+5$
MAX \# of Turning Points (curves):	MAX \# of Turning Points (curves):	MAX \# of Turning Points (curves):
Sign of LC (a) _ ___ Degree:	Sign of LC (a):___ Degree:	Sign of LC (a) \qquad Degree:
as $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$
as $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow$
10] $y=6-2 x-4 x^{2}+5 x^{3}$	11] $y=1+2 x^{6}-4 x^{2}-2 x^{6}$	12] $y=4 x+2-5 x^{6}$
Standard Form:	Standard Form:	Standard Form:
MAX \# of Turning Points (curves):	MAX \# of Turning Points (curves):	MAX \# of Turning Points (curves):
Sign of LC (a):___ Degree:	Sign of LC (a) :___ Degree:	Sign of LC (a):__ Degree:
as $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$
as $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow$	as $\mathrm{x} \rightarrow+\infty, \mathrm{y} \rightarrow$

Match the polynomial function with its graph WITHOUT using a graphing calculator. Think about how the degree of the polynomial affects the shape of the graph.
A.

D.

G.

13] $y=-x^{2}+4 x$
14] $y=-x^{4}+3 x^{2}+3$
15] $y=\frac{1}{2} x^{4}-\frac{3}{2} x^{3}$
B.

E.

H.

\qquad 16] $y=-2 x^{3}+3 x+1$
17] $y=3 x^{2}+2$
18] $y=\frac{1}{5} x^{5}-2 x^{3}+\frac{9}{5} x$
C.

F.

I.

_119] $y=\frac{1}{3} x^{3}-x^{2}-\frac{4}{3}$
20] $y=\frac{2}{3} x-4$
_21] $y=-5 x+2$

